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Project Goal #1. Estimate Cascading

Faillure Risk in Real Time

Develop a method to integrate data from PMUs
and ensembles of simulations to measures of risk

Real-time
blackout risk
meter
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Project Goal #2:. Develop Methods to
Mitigate Emerging

* Develop algorithms to
quickly dispatch storage
and demand response to

mitigate emerging

cascading failure risk.
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* Why do we need to worry about cascading
failure risk?

* Preliminary results
Cascading failures and network structure
Critical Slowing Down

* Plan for this project
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Why we need to (continue to) worr
about cascading failure risk
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Very large blackouts in N. America

Date Location MW Customers Type

14-Aug-2003  Eastern US, Canada 57,669 15,330,850 Cascading failure
13-Mar-1989  Quebec, New York 19,400 5,828,453 Solar flare, cascade
18-Apr-1988  Eastern US, Canada 18,500 2,800,000 Ice storm
10-Aug-1996  Western US 12,500 7,500,000 Cascading failure
18-Sep-2003  Southeastern US 10,067 2,590,000 Hurricane Isabel
23-Oct-2005  Southeastern US 10,000 3,200,000 Hurricane Wilma
27-Sep-1985  Southeastern US 9,956 2,991,139 Hurricane Gloria
29-Aug-2005  Southeastern US 9,652 1,091,057 Hurricane Katrina

Jan-1998 Northeast US/Canada 9,000 1,400,000 Ice storm
29-Feb-1984  Western US 7,901 3,159,559 Cascading failure
4-Dec-2002 Southeastern US 7,200 1,140,000 Ice/wind/rain storm
10-Oct-1993  Western US 7,130 2,142,107 Transmission failure, cascade
14-Dec-2002 Western US 6,990 2,100,000 Winter storm
4-Sep-2004  Southeastern US 6,018 1,807,881 Hurricane Frances
25-Sep-2004  Southeastern US 6,000 1,700,000 Hurricane Jeanne
14-Sep-1999 Eastern US 5,525 1,660,000 Hurricane Floyd
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Blackouts over time

25
o0 - 0 Blackout size legend
B 230,000 MW
7))
g I > 10,000 MW
S5 W L ] > 3,000 MW
rs 1> 1,000 MW
5 - L I> 300mw
Q
E 10
Z
]
L]
5_

0
1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006
Year Hines, et al., Energy Policy, 2009

Hines, 3 Nov. 2010 7 L



Blackouts by time of day
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Power-laws
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How should we model cascading
failure In power grids?
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Question: What models provide useful

iInformation about grid vulnerability?

Che New JJork Times

Asia Pacific

“* Academic Paper in China Sets Off Alarms in U.S.
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Catastrophic cascade of failures in interdependent
networks

Sergey V. Buldyrev'?, Roni Parshani®, Gerald Paul’, H. Eugene Stanley” & Shlome Havlin®
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But cascades in power grids are

different...

Safety
science
model

Node
fails

By Kirchhoff’s
laws
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Results for 40 areas In the

Eastern Interconnect
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Even measures that work in the averages, fail
to predict the impact of individual disturbances
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For some reason everyone Is interested

In the grid these days...

DITORS'CHO

EDITED BY KRISTEN MUELLER AND JAKE YESTON

ENGINEERING

What Keeps the Power On?

Topological models use tools from graph theory to explore connections
among elements of complex systems. Recently their application to elec-
tricity distribution has stoked fears, including in the U.S. Congress, that
massive grids could be crippled by seemingly minor initial disruptions.
Targeted attacks on nodes with low loads but high connectivity, some
argued, could inflict more damage than attacks on the highest-loaded
nodes. Yet such systemwide failures are dictated not only by the nodes
and connectivity of the system but also by the laws of Ohm and Kirchhoff
that describe the physics of electrical flow. In a systematic comparison
of topological and current-flow models, Hines et al. show that topologi-
cal models, which do not fully capture the effects of electrical flow, can
lead to some misleading conclusions. Though all models showed that
different types of targeted disruption would inflict more damage than
would random fzilures, the physics-based measure of blackout size—the
amount of electrical load curtailed—did not show the same susceptibility
to disruption of low-traffic nodes as did the topological measures of con-
nectivity that so alarmed Congress. Allocation of infrastructure protection
resources informed by physics-based models would focus on nodes that
transport the largest amounts of power. — BW

Chaos 20, 33122 (2010).

greatest vulnerabilities are generally where the
power flow is greatest.
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Critical slowing down as an
iIndicator of risk in power grid
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Context

Wil 4513 Sepdemiper 2002 | doi: 109038/ nature 8 22T et

REVIEWS

Early-warning signals for critical transitions

Marten Seheffer’, Jordi Baseompte”, William A. Breck’, Vieter Brovkin®, Stephen R. Carpenter”, Vasilis Dakos',
Herrmann Held”, Egbert H. van Mes', Max Rietkerk” & George Sugihara®

Complex dynamical systems, ranging from ecosystems to financial markets and the climate, can have tipping points at which
a sudden shift to a contrasting dynamical regime may occur. Although predicting such critical poinks before they are reached

is extremely difficult, work in different scientific fields is now suggesting the existence of generic early-warning signals that
may indicate for a wide class of systems if a critical threshold is approaching.

As systems approach “collapse” they shows signs
of critical slowing down.
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Could this be useful for power grids?

e Operators will soon have terrabytes of time-
series PMU data available.

* Are there statistical patterns in PMU data that
indicate proximity to collapse?

Real-time
blackout risk

meter | |”

Hines, 3 Nov. 2010



1-machine, infinite bus model results
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What about the WSCC on

August 10, 19967
* Lines sagged into trees, triggering a cascading
failure
* 7.5 million customers lost power. 7 states +
Canada.
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Aug. 10, 1996 results
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Conclusions

* Changes in autocorrelations and cross
correlations in PMU data may indicate proximity
to critical points, like voltage collapse.

* As a component of this project we will develop
metrics that can be used by operators to identify
proximity to cascading failure risk.
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Work Plan
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1. Estimating cascading failure risk

* Use high-performance computing
to develop a real-time estimator of
cascading failure risk, based on
ensembles of simulations

Led by Co-PI C. Danforth (Ensemble
Prediction for Chaotic systems)

IBM Watson research will provide HPC
expertise.
* Correlate CSD with Cascading
Failure risk to produce an aggregate
estimator of risk.

Hines, 3 Nov. 2010



2. Mitigating Risk

* Develop algorithms based on Decentralized
Model Predictive Control for the emergency
dispatch of storage and demand response for
Cascading Failure risk mitigation.
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Prelim. work plan. Currently in Q1 of
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Team Roles

* Hines (Pl): Power Systems, Cascading Failures,
Smart Grid, Control Methods

Technical lead

e Danforth (Co-Pl): Mathematics, Numerical
Methods, Ensemble Prediction

e |BM Watson (cost-share): High-performance
computing, Smart Grid industry,
commercialization
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Questions?
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